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Abstract—We explore the use of graph embedding techniques
to represent the player behaviour that is expressed in the logs
of video games. While such logs hold data that could be useful
for personalization, the data is often poorly structured for use
with Artificial Intelligence systems and its dimensionality is often
high. By using a graph to structure the logs and applying
embedding techniques to reduce their dimensionality, a compact
vector representation can be obtained that preserves some of
their semantics. To explore the potential value of this approach,
we obtained gameplay logs from over 3000 matches of Defense of
the Ancients 2 (Dota 2) and compared 13 parameter variations
of three different embedding techniques: NODE2VEC, LINE, and
TGN. Our analysis considers the effects of embedded vector size,
dataset size, a step size used for updating vectors as a game
proceeds, and different types of player interaction. The results
show that NODE2VEC outperforms the other techniques on 7 of
the 13 variations that we tested, and that removing one type of
player interaction can make it easier to predict the others.

Index Terms—Player Modelling, Graph Embedding, Dota 2

I. INTRODUCTION

Machine Learning (ML) models generally need their input
data to be given in numerical form. Because of this, it is
essential to convert real-world data like text, images, videos,
and graphs into a numerical format (i.e., a vector) before
supplying them to an ML model. Minimizing the size of such
vectors (and keeping their representation of the data dense)
helps to keep the ML model small and avoid overfitting.

What if we could embed player behaviour in a dense vector
space? For one, knowing that a vector represented a particular
behaviour would make it easier to recognize that behaviour.
Behaviour recognition is a key challenge of personalization,
which can have a significant impact on player engagement [1].
With reliable and automated behaviour recognition, a player’s
play style could be identified and used to tailor a game’s
progression [2], [3]. Furthermore, with sufficient data, it might
be possible to pre-train models that embed more generic
behaviours in a game-independent way, and then fine-tune on a
per-game basis to embed more game-specific behaviours. Such
a scheme might facilitate the transfer of player behaviour data
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across different games, while also reducing the computational
cost of training models for multiple games.

Previous methods for modelling player behaviour using ML
have relied heavily on handcrafted features that are highly
game-specific [4], [5]. Furthermore, Eggert et al.’s classifi-
cation of Defense of the Ancients 2 players also required
extensive manual labelling of gameplay logs, which limits the
general viability of their approach [4], [6]. Recent applications
of ML to modelling for games have sought to encode in-game
objects [7] or predict player emotions [8], but they did not
attempt to represent player behaviour.

Embedding techniques are methods for encoding objects
such as words, images, or graphs as vectors in a dense, low-
dimensional space [9]–[12], and graph embedding techniques
are those that particularly accept data represented as a graph
(i.e., nodes connected by edges) as their inputs [13]–[15].
In this paper, we propose a way to apply and evaluate graph
embedding techniques as methods for representing player
behaviour. Compared to previous modelling methods, our ap-
proach is game-agnostic, requires no manual labelling of logs,
and avoids a need for handcrafted features. To demonstrate our
approach, we situate our work in the context of a popular com-
mercial video game (Defense of the Ancients 2) and attempt to
represent the behaviour of players therein. Using our general
method for converting gameplay logs into a graph of player
interactions, we apply three graph embedding techniques and
assess their value: NODE2VEC, LINE, and TGN [13]–[15]. To
establish a metric of success, we adapt a link prediction task
from the graph embedding literature [16] to the domain of
gameplay logs, and assess how well the embedded vectors
from each technique can inform predictions of future player
interactions. We evaluate each technique across a variety of
parameterizations, to help characterize their behaviour and
inform future work. Beyond this characterization, our exper-
iments reveal that the relative frequency of different types
of interaction might influence how fully any lower-frequency
interactions get represented in the embedded vectors.

Before proceeding with the rest of the paper, we briefly
introduce embedding techniques in general and then review
the three graph embedding techniques that we tested. We then
give an overview of Defense of the Ancients 2 (Dota 2).979-8-3503-2277-4/23/$31.00 ©2023 IEEE
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A. Embedding Techniques

The goal of an embedding technique is to encode the
semantic meaning of some given objects (e.g., text, images,
graphs), which can simplify comparison via ML algorithms.
For example, word2vec embeds words into a low-dimensional
space using a neural network [9]. The addition and subtraction
of these vectors result in new representations in the vector
space (e.g., adding the vectors for a car and the colour red
can construct a vector representation for a red car). Mordatch
showed that simple concepts can be successfully embedded
as vectors [10], [11], and Du, Li, and Mordatch extended the
same idea to represent images as vectors [12].

B. Graph Embedding Techniques

Graph embedding techniques take a graph as input, where
a graph is defined as a set of nodes and a set of edges, where
each edge connects two nodes as neighbours in the graph. For
the techniques that we explored for this work, each node of
the given graph is embedded as a separate vector in a shared
vector space. Specifically, we investigated three techniques:
NODE2VEC [13], LINE (Large-scale Information Network Em-
bedding) [14], and TGN (Temporal Graph Network) [15]. We
chose these techniques due to their promising results in other
embedding tasks and their easily accessible and executable
source code. To help keep the paper self-contained, we briefly
review the operation of each technique.

1) NODE2VEC: The word embedding method WORD2VEC
successfully embeds words in a vector space based on how
they co-occur in the sentences of a corpus of training text [9].
The words can be of any language and use unique identifiers,
since the only information relevant for WORD2VEC is which
words appear together in a sentence. NODE2VEC [13] lever-
ages this flexibility of WORD2VEC by generating “sentences”
as strings of nodes that are visited by random walks across the
graph. Nodes that are connected by edges in the graph appear
adjacent to one another in these generated sentences. A corpus
of generated sentences is then used to train a neural network
(similarly to WORD2VEC) and provide vector representations
of the nodes’s connections in the graph.

2) LINE: The core premise of LINE (Large-scale Informa-
tion Network Embedding) is that two nodes that are connected
in the graph should be closer to one another in the vector
space than nodes that are not connected [14]. LINE uses a fully
connected, deep neural network to encode each graph node and
its connections to other nodes as a vector. The encoded vectors
of two nodes are compared, and the weights of the network
are tuned to minimize/maximize the distance between nodes
that are/aren’t connected.

3) TGN: TGN (Temporal Graph Network) works by build-
ing node vectors one interaction at a time [15], and thus sup-
ports building vectors dynamically as the interactions happen.
In the text domain, an interaction might be a co-occurrence of
two words in the same sentence, where each word is a node
in the graph. In a game, it might be a co-occurrence of two
game entities in the log of a single in-game event, where each
entity is a node in the graph. At a high level, TGN maintains a

“memory” vector for each graph node that it detects in a stream
of interactions; this vector serves as a compact representation
of the node’s history of interactions. To produce an embedded
vector for a given node n, TGN combines n’s memory vector
with the memory vectors of other nodes that n has recently
interacted with. TGN’s functions for updating the memory and
for embedding nodes as vectors are implemented as neural
networks, which are trained using a loss function based on
predicting edges in the graph (future node interactions).

C. Defense of the Ancients 2

A full description of the game that we used for testing is
beyond the scope of this paper, but a brief introduction should
be sufficient to understand the context of our work. Defense
of the Ancients 2 [6] is a competitive, multiplayer computer
game in which two teams of players compete for control of
a small geographical area. Its title is commonly shortened to
“Dota 2”. Typical gameplay consists of a match between two
teams of five heroes, where each player chooses their desired
hero before the match begins and controls that hero during the
match. A hero is a player-controlled, in-game character that
can move, attack, use a variety of special abilities, collect and
use runes (power-ups), and buy and use special items. Heroes
differ in terms of gameplay statistics (e.g., health, damage),
special abilities, and artwork, and at the time of writing, Dota 2
offered more than 100 unique heroes to choose from. Each
team begins in a base on opposite sides of the area and works
to progress across the area and destroy the opposing team’s
base. Each player can earn in-game gold via combat, and they
can spend this gold to buy items for later use.

A limitation of our strategy for assessing embedding tech-
niques is that it requires gameplay logs that have timestamps:
one for each entry that describes a player interacting with
an entity in the game. As sources for gameplay logs, we
considered four games that had large player bases and offered
open player data: Dota 2 [6], PlayerUnknown’s Battlegrounds
(PUBG) [17], StarCraft II [18] and League of Legends [19]. At
the time of our analysis, only Dota 2 and PUBG offered data
that met our timestamp requirement. Of those two, we selected
Dota 2 due to the convenient access to data afforded by the
OpenDota API [20]. In the available dataset from Dota 2,
logs from 3281 play sessions contained the timestamps that
we needed for our study. We used all 3281 logs.

II. PROBLEM FORMULATION

The overarching goal of our work is to better understand
how different graph embedding techniques perform on player
behaviour data. For this paper, we sought to characterize the
performance of three techniques (NODE2VEC [13], LINE [14],
and TGN [15]) when representing data from the logs of a
computer game. To focus our work, we pursued two desirable
properties for such techniques.

First, they must produce vectors that each represent their
associated player behaviour in a meaningful way. Following
Xu et al. [16], we quantify this notion by training three
linear classifiers (each using vectors produced by only one



of the three techniques) and measuring the accuracy of each
classifier. Each classifier must repeatedly predict whether a
given pair of game entities will interact before the game ends.
We posit that higher prediction accuracies for this task provide
stronger evidence that a method’s vectors represent meaningful
information. Intuitively, the more accurately that some vectors
can be used to predict a game’s future, the more likely it is
that those vectors represent meaningful game information.

Second, a graph embedding technique must produce vectors
that require less data than the raw behaviour logs that they
were produced from, to minimize storage costs and vector
computation time. We compare the storage footprints of both
our logs from Dota 2 and the vectors that our three tested
techniques produced.

III. RELATED WORK

Khameneh and Guzdial used neural networks to derive
embeddings of game entities based on their physical attributes,
which included their size, velocity, and location [7]. They
aimed to capture information about game dynamics in the
resulting latent space, toward supporting procedural content
generation tasks that use machine learning. Starting from
roughly 100 frames of gameplay video from two Atari games,
they first extracted a ruleset for each game using Guzdial,
Li, and Riedl’s Game Engine Search algorithm [21]. From
these rulesets, they identified possible attribute configurations
of each game’s entities. Given these possible configurations,
they represented each entity using a one-hot vector of 1600
values, and then trained a variational auto-encoder to embed
each 1600-D input vector into a 25-D vector space.

Our work differs from Khameneh and Guzdial’s in two key
ways. First, the starting point of our data is text logs of game-
play, rather than video of gameplay. While the availability of
gameplay video as a data source is higher, it is nevertheless
useful to develop methods that can leverage the structured
information contained within text logs, given that such logs
are often available. Second, the data that we aim to embed
represents player behaviour – not the physical attributes of
game entities. While the Game Engine Search algorithm does
seem capable of accounting for player actions as part of its
rulesets [21], Khameneh and Guzdial did not describe using
any rules that would have done so. We thus assume that their
vectors did not represent player behaviour.

Eggert et al. tested the performance of different methods of
classifying the behaviour of Dota 2 players, each into one of
nine custom-defined roles [4]. They identified 18 data features
to use for the classification task, eight of which were available
directly from gameplay logs. The ten remaining features
required manual annotation to obtain, and they used crowd-
sourcing in which participants watched and labeled a replay
of every game in their dataset. Manual annotation is time
consuming and potentially prone to errors, and so instead our
analysis relies solely on data that can be parsed automatically
from Dota 2 replay files. Furthermore, our criteria for selecting
data features was more general: if a feature described an

interaction between a player and some other entity in the game,
we included that feature in our selection.

Pirker et al. used Sankey diagrams to model how players
of Just Cause 2 [22] transitioned between different archetypes
while playing [5]. They derived their clusters from a set of
features that they hand-picked from their dataset. Our method
avoids any need to hand-pick features.

Makantasis, Liapis, and Yannakakis combined several neu-
ral networks to predict a player’s arousal based on the video
and audio signal from a game that the player plays [8]. While
having a model of player arousal could be useful in predicting
a player’s behaviour, such a model does not aim to represent
that behaviour, which is what we do in the present work.

Rabii and Cook applied WORD2VEC [9] (upon
which NODE2VEC is based) to embed data from a large
collection of logs of players playing chess [23]. Rather
than representing how players might behave, they sought to
represent the dynamics of Chess in the resulting embeddings,
and they did not compare WORD2VEC to any other techniques.

We are not aware of any prior work that has attempted to
deploy and characterize graph embedding techniques in the
context of representing player behaviour.
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Fig. 1. Our framework for experimentation. Boxes represent computation
while arrows represent data. The shades of thick arrows distinguish between
data that was related to the vectors produced by NODE2VEC (darkest shade),
LINE, and TGN (lightest shade).

IV. PROPOSED APPROACH

To characterize how well graph embedding techniques can
represent player behaviour from gameplay logs, we developed
the framework for experimentation that appears in Figure 1.
Starting from raw logs that span a large number of play
sessions, we first select all log entries that represent player
interactions (with the game environment or with other players).
Next, we use the selected logs from ∼90% of the sessions
to build a graph of player interactions (see Section IV-A),



withholding a randomly drawn ∼10% for generating unseen
test cases. We use the graph as the input to each of our tested
embedding techniques (Section I-B), where each technique
produces embedded vectors: one for every node in the graph.
We evaluate each technique’s vectors by training and testing
a simple classifier (one per technique) on a prediction task:
given a history of all players’ interactions up to some random
time point within a play session, predict whether two randomly
chosen entities will interact before the play session ends. We
generate the samples to train and test these classifiers using
the ∼10% of play sessions that we withheld from building the
graph, as doing so helps us assess whether the information that
the vectors represent can be generalized to novel play sessions
(see Section IV-B). We train and test each classifier using the
generated samples via 10-fold cross-validation. We explain our
choice of classifier in Section IV-C.

A. Building a Graph from Interactions

Gameplay logs are often stored as text. While word embed-
ding techniques for text have seen substantial popularity and
success [9], [24], they were designed to work on data that is
less structured (e.g., natural sentences) than what is contained
in gameplay logs. Li et al. found that graph embedding
techniques offer a promising way to take advantage of such
structured information [25], modelling data features as nodes
in a graph where edges represent interactions between those
features. We adopt this strategy in our work; a feature identifies
an in-game entity as a label in a log entry, and each log
entry that associates two entities at a particular point in time
constitutes an interaction between those features/entities. For
simplicity, we only model binary interactions.

Since we aim to capture player behaviour, we build a graph
using only log entries that have at least one entity that is
controlled by a player (e.g., a hero in Dota 2). Having selected
the log entries that meet this criterion, we build the graph as
follows. First, create a node in the graph for each entity that is
identified in at least one of the selected log entries. Using our
logs from Dota 2, the result is a graph that contains a node for
each of the game’s playable heroes, each of the items that a
hero can purchase and use, and each of the abilities and runes
that a hero can use, amounting to roughly 1000 nodes.

Next, we must consider whether we are building a graph
for an embedding technique that works on static graphs
(like NODE2VEC or LINE), or dynamic graphs (like TGN). If
building a static graph, then for each pair of entities (m,n)
that appear together in at least one of the selected log entries,
we add an edge to the graph between m’s and n’s nodes
(provided that the edge does not already exist in the graph).
Note that static graphs fail to capture any information about
repeated interactions between two entities, because only the
first interaction has any effect on the constructed graph. If
building a dynamic graph, then for every selected log entry
in which a pair of entities (m,n) appear together at some
particular timestamp, we add an edge to the graph between
m’s and n’s nodes that is labelled with that timestamp. In
such a dynamic (multi-)graph, every interaction between two

entities gets represented in the graph, because two nodes can
have multiple edges between them. Using our Dota 2 logs,
the graph for NODE2VEC and LINE gains roughly 32k edges,
while the graph for TGN gains roughly 124k edges.

Fig. 2. Part of a Dota 2 log sourced from the OpenDota API [20], with some
of Player 6’s ability uses and item uses highlighted by green rectangles.

To help illustrate the graph building process, consider the
partial log data shown in Figure 2. This data would result in
eight nodes being added to the graph, assuming that they had
not already been added while processing an earlier part of
the log. These nodes would include one for player 6 (06 in
the figure), one for each of the four void_spirit abilities
shown, and one for each of the three items shown. For the
graph used by NODE2VEC and LINE, seven edges would be
added, if they were not already in the graph: one for each
connection between player 6 and each of the other seven
nodes. For the graph used by TGN, the seven edges would
be added (with timestamps) regardless of whether or not any
of them were already in the graph with earlier timestamps.

B. Generating Samples for Classification

After applying any graph embedding technique to a graph
built from player logs, we obtain a set of embedded vectors
– one for each node in the graph. At a high level, we test
the quality of these vectors by using them to train and test a
classifier; the classifier tries to predict whether any given pair
of game entities will interact before a given play session ends,
and after the point in time that the vectors describe.

To describe a point in time during a play session using our
embedded vectors, we update the vectors to account for all of
the entity interactions that can be observed from the log of
the given play session, prior to the desired point in time. We
perform this accounting as follows. As before, we first select
only the log entries that refer to at least one player-controlled
character. For each of the selected log entries (in chronological
order), we retrieve the embedded vector for each of the entities
that it describes (vectors vm and vn), and update each vector
by taking a step (controlled by α ∈ [0, 1] ⊂ R) in the direction
given by the other vector:

vm ← vm + α ∗ vn
vn ← vn + α ∗ vm

(1)



Intuitively, entities that interact more become more aligned in
the vector space. The step size, α, is one of the parameters
that we varied in our experiments (α = 0.0025, 0.05, or 0.10).

Our classification task is thus: Given an updated set of
vectors that represents a particular point in time in a play
session, predict whether two given entities will interact after
that point in time, and before the play session ends. Training a
classifier to perform this task requires labelled data, which we
generate automatically using the ∼10% of gameplay sessions
that we withheld from the graph building process. To provide
ample data to the classifier, we use each of the play sessions
to generate 100 labelled data points.

To generate a data point from a play session, we need a time
point during that session, updated vectors for two entities at
that time point, and a correct label concerning whether or not
those entities interact after that point in time. We begin by
choosing two entities at random from those that interact in
the given session. Next, we search through the session’s log
entries to find the final interaction between the chosen entities.
Finding the final interaction is useful because it allows us to
choose our time point (before the final interaction, or after)
in a way that guarantees the correctness of the label that we
assign (“yes”, or “no”, respectively). The last step is to choose
a specific time point and calculate updated vectors for our
chosen entities, using the logs that precede that time point.
Since we have some freedom in this choice (e.g., any point
before the last interaction will do, for a “yes” answer), we
constrain the choice in a way that reduces computation across
the 100 generated samples.

1) Reduced Computation for Vector Updates: To avoid
computing an updated set of vectors for each of the 100
samples that we generate from every play session, we first
precompute a handful of updated vector sets for each play
session, and then sample randomly from those vector sets
when generating each data point. This works as follows.

For a given play session, we begin by segmenting it into
adjacent slots of time. The logs of Dota 2 offer a convenient
basis for this segmentation, as they are already separated into
adjacent periods of combat (called “team fights”) and non-
combat; for our experiments, we took each of these periods as
a time slot. Short matches of Dota 2 have few time slots, while
a long match might have 20. For the last log entry in each of a
session’s slots, we compute and store an updated set of vectors,
where every updated set accounts for all of the selected log
entries that precede it, as explained in Equation 1. In Figure 3,
each time slot is marked with Tk and each corresponding set of
updated vectors is marked with Vk, where k ≥ 1 is a number
that identifies the slot/set.

Game Start Game EndFinal Interaction
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T4
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T5
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V3
<latexit sha1_base64="IhWKf3+9sd2uPL3NBT9m3B/6SIA=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRjDxRHYJUY9ELx4xcYEENqRbutDQdjdt14Rs+A1ePGiMV3+QN/+NBfag4EsmeXlvJjPzwoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TRahPYh6rbog15UxS3zDDaTdRFIuQ0044uZv7nSeqNIvlo5kmNBB4JFnECDZW8qvtQaM6KFfcmrsAWideTiqQozUof/WHMUkFlYZwrHXPcxMTZFgZRjidlfqppgkmEzyiPUslFlQH2eLYGbqwyhBFsbIlDVqovycyLLSeitB2CmzGetWbi/95vdREN0HGZJIaKslyUZRyZGI0/xwNmaLE8KklmChmb0VkjBUmxuZTsiF4qy+vk3a95l3VGg/1SvM2j6MIZ3AOl+DBNTThHlrgAwEGz/AKb450Xpx352PZWnDymVP4A+fzB5cpjeQ=</latexit>

V4
<latexit sha1_base64="DUg6FAsD0hJdBFKDj22sWBgnS90=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRjDxRHaJX0eiF4+YuEACG9ItXWhou5u2a0I2/AYvHjTGqz/Im//GAntQ8CWTvLw3k5l5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epItQnMY9VJ8Saciapb5jhtJMoikXIaTsc38389hNVmsXy0UwSGgg8lCxiBBsr+dVW/7LaL1fcmjsHWiVeTiqQo9kvf/UGMUkFlYZwrHXXcxMTZFgZRjidlnqppgkmYzykXUslFlQH2fzYKTqzygBFsbIlDZqrvycyLLSeiNB2CmxGetmbif953dREN0HGZJIaKsliUZRyZGI0+xwNmKLE8IklmChmb0VkhBUmxuZTsiF4yy+vkla95l3VLh7qlcZtHkcRTuAUzsGDa2jAPTTBBwIMnuEV3hzpvDjvzseiteDkM8fwB87nD5iujeU=</latexit>

V5
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Fig. 3. A visualization of part of a play session, segmented into time slots.
The T s represent time slots and the V s represent sets of updated vectors. The
dashed line shows the last log entry in which entities m and n interacted.

We use the stored sets of vectors when generating each new
classification sample. Given a chosen pair of entities (m,n),
we find the final time slot in which the entities interact (Tfinal).
For example, in Figure 3, Tfinal is T4. To generate a sample with
a “yes” label, we choose a random time slot earlier than Tfinal
(if one exists) and we retrieve the updated vectors for m and
n from those that were stored for the chosen time slot. In our
example, we would randomly choose a time slot earlier than
T4, say, T3, and then retrieve the updated vectors for m and n
(vm and vn) from the set of vectors V3. Our labelled sample
would then consist of the tuple ⟨vm, vn, yes⟩. Generating a
sample with a “no” label follows a similar process, but chooses
a random time slot after Tfinal instead (if one exists). Given
that this process can fail (for “yes” answers when Tfinal is the
first time slot in the log, and for “no” answers when Tfinal is the
last slot), we continue attempting to generate data points until
100 samples have been generated successfully. To generate
a reasonably balanced data set, we generate “yes” and “no”
answers each with 50% probability.

From our total dataset of 3281 Dota 2 play sessions,
we reserved 328 of them (∼10%) for generating samples
for classification. At 100 samples per play session, we thus
generated 32800 samples to train and test each classifier.

C. Training and Testing Classifiers

To assess the quality of the vectors that are generated by
a given embedding technique, we train and test a simple
classifier using binomial logistic regression and 10-fold cross-
validation. We posit that higher quality vectors can better
inform the classifier, and thus achieve a higher accuracy on our
prediction task. Nevertheless, it is important to recall that our
goal is not to optimize any classifier for prediction accuracy.
Instead, we seek to establish an indicator of vector quality
that can be compared across embedding techniques and is
straightforward to interpret.

We train and test a separate classifier for each embedding
technique, each using a unique set of classification samples
that we generated in the previous step. Finally, we compute
each classifier’s prediction accuracy. We use the resulting
accuracies as indicators of how well each embedding technique
was able to represent information about player behaviour in
the embedded vectors that they produced. We take a higher
accuracy to indicate a more useful set of embedded vectors –
at least for predicting interactions between in-game entities.

V. EXPERIMENTS, RESULTS, AND ANALYSIS

We characterized the three embedding techniques that we
tested by repeatedly applying our framework for experimen-
tation across a range of different parameter configurations.
The parameters that we varied were the number of dimensions
of the embedded vector space, the number of play sessions
used as input, the types of interactions used when building
the graph, and the step size used when updating vectors
during sample generation. To focus our analyses, we left any
other parameters at their defaults, as given by the open-source
implementations of the techniques that we used [26]–[28].



We varied the number of vector dimensions and the number
of play sessions because they are both related to important
practical tradeoffs. Vectors with fewer dimensions are cheaper
to store and compute, but have less representational power.
Meanwhile, minimizing the number of play sessions used can
reduce computation and support games that have fewer logs
available, but risks producing less meaningful vectors due to
there being less information in the input. We varied the types
of interactions that are used when building the graph to help
understand how much the inclusion of each type affects the
overall quality of the embedded vectors. Finally, we varied
the step size for the vector updates to understand how each
technique might respond to our simple updating scheme.

We tested four values for number of dimensions (16, 128,
256, 512), three values for number of games (100, 500, 3281),
five ways to filter out types of interaction (leaving one of
the following out: item purchases, kills, rune uses, ability
uses, item uses), and three step sizes (0.0025, 0.05, 0.10). To
simplify interpreting our results, we only varied one parameter
at a time, using the following fixed values for the other three
parameters: number of dimensions: 512, number of games:
3281, types of interactions: all, step size: 0.05. We settled
on these “default” values via early informal testing, as they
seemed to show clear differences across the three techniques.
To enable fair comparisons, we used the same random seeds
across all three techniques when splitting the play sessions,
generating samples for classification, and splitting the samples
for 10-fold cross-validation.

TABLE I
PREDICTION ACCURACIES FOR NUMBERS OF VECTOR DIMENSIONS.

16 128 256 512
NODE2VEC 0.520 0.582 0.603 0.617

LINE 0.520 0.580 0.586 0.591
TGN 0.516 0.518 0.520 0.522

TABLE II
PREDICTION ACCURACIES FOR NUMBERS OF PLAY SESSIONS.

100 500 3281
NODE2VEC 0.621 0.661 0.659

LINE 0.621 0.623 0.644
TGN 0.554 0.589 0.530

TABLE III
PREDICTION ACCURACIES WHEN ONE INTERACTION TYPE EXCLUDED.

Purchase Kill Rune Ability Item
N2V 0.708 0.645 0.645 0.571 0.588
LINE 0.706 0.596 0.613 0.541 0.604
TGN 0.679 0.541 0.604 0.541 0.520

TABLE IV
PREDICTION ACCURACIES FOR STEP SIZES.

0.0025 0.05 0.10
NODE2VEC 0.650 0.655 0.647

LINE 0.633 0.638 0.642
TGN 0.522 0.521 0.520

When each parameter value varies, the others remain fixed at these values:
Dimensions: 512, Play Sessions: 3281, Interactions: All, Step Size: 0.05.

A. Results

Tables I to IV show the results of our experiments for each
value of each parameter. The headings show the values of the
parameter that we varied while collecting the data in the table;
in Table III, the heading shows each type of player interaction
that we excluded from the dataset.

Because of how we fixed values for the parameters that
we held constant in each experiment, results for one specific
parameter variation appear three times (num. dimensions: 512,
num. games: 3281, all interactions included, step size: 0.05);
these appear as the 512 column in Table I, the 3281 column
in Table II, and the 0.05 column in Table IV. The reported
accuracies are different because we varied the random seeds
as described above before testing each range of parameters.

To help quantify the amount of variance that is inherent
in the accuracies that we report (and thus help inform what
differences can be considered meaningful), we collected more
data for the parameter configuration that is represented in
these three cases. Specifically, we split our 3281 play sessions
into ten roughly equal segments (of 328 or 329 logs) and
applied our experimentation framework once for each segment,
treating it as the ∼10% of data to withhold and the remaining
∼90% as the data to use when building the graph. The
average prediction accuracies across these ten experiments
were (NODE2VEC: 0.623, LINE: 0.587, TGN: 0.526), and for
all three techniques the standard deviation was less than
0.01. Though not conclusive, this suggests that differences in
accuracy greater than 1-2% can be considered meaningful.

B. Analysis

As expected, the accuracies are not high – we made no
attempts to optimize the simple predictors that we used, nor
did we investigate whether any other predictors might result in
stronger predictions. In our analysis, we are unconcerned with
the absolute accuracy of any predictor, and very concerned
with the relative differences in accuracies between multiple
predictors. These relative differences help us understand how
the embedding techniques that we tested fared at representing
player behaviour, in comparison to (i) one another and (ii)
themselves using different variations of their parameters.

From Table I, it seems clear that using only 16 vector
dimensions was too few for both NODE2VEC and LINE, as the
prediction accuracy due to their vectors jumped substantially
when we used 128 dimensions or more. There may be dimin-
ishing returns for using more than 128 dimensions, however,
as the gains in accuracy for doing so were minimal at best.
TGN performed poorly regardless of how many dimensions we
used, and it generally performed worse than both NODE2VEC
and LINE across 9 of the 13 variations that we tested1.

The Purchases column of Table III hints at an explanation
for TGN’s poor performance. Item purchases are peculiar
as interactions in Dota 2, in that they tend to be heavily

1While Tables I to IV show a total of 15 values, we say that we tested
only 13 variations because three of the 15 values all represent one specific
variation of our parameters, as we explained in Section V-A.



overrepresented among all interactions and are often repeated
both within and across play sessions (i.e., players buy many
items, and they often buy a particular item multiple times).
While the graph for NODE2VEC and LINE are unable to
represent these repeat purchases (recall Section IV-A), the
graph for TGN does represent all of these repeat purchases.
Given that the representational power of the embedded vectors
must be shared across all interaction types, we suspect that (i)
the relative abundance of purchase interactions reduces the
vectors’ capacity to represent other types of interaction, and
(ii) this has a particularly pronounced effect on TGN’s vectors.
The Purchases column of Table III supports these suspicions:
when we removed the log entries related to item purchases
before any graphs were built, the accuracies all improved to
the highest that we observed across all of our experiments.
Furthermore, the performance of TGN increased the most of
all – from 0.530 (see the 3281 column of Table II) to 0.679.

The accuracies for TGN’s vectors shown in Table II are also
consistent with our suspicion about the effect of including pur-
chase interactions when building TGN’s graph. While training
on more play sessions is helpful to a point (from 100 to 500
yields an improvement), training on all 3281 play sessions is
worse than training on only 100. While the addition of more
data from play sessions seems likely to improve accuracy (save
overfitting), an increasing, damaging effect from the inclusion
of more purchase interactions might overwhelm the benefit
of more data, leading to the decrease in accuracy that we
observed when using all 3281 play sessions.

As shown in Table IV, the different values that we tested for
our vector update step size seem to have had no meaningful
effect on the quality of the embedded vectors. Perhaps other
values for step size might have a meaningful effect.

The performance of NODE2VEC is the strongest overall,
obtaining higher accuracies than the other techniques in 7 of
the 13 different variations that we tested.

In terms of storage efficiency, embedded vectors require
substantially less storage than the logs that we used to compute
the vectors. On average, each log file requires roughly 260KB
of storage, amounting to 852.6MB for the 3281 logs that
we used. In contrast, a set of roughly 1000, 512-dimensional
vectors (one per graph node) stored with 64-bit precision
requires only about 4.1MB – two orders of magnitude less
than the log data that they aim to represent. This savings
is particularly relevant in the context of game development,
where the available space for volatile and non-volatile storage
on entertainment consoles is highly constrained.

VI. DISCUSSION AND FUTURE WORK

The goal of our work was to characterize the performance of
three vector embedding techniques with regard to their ability
to represent player behaviour. We claim success – not because
any of the models predicted particularly well (they did not)
– but because our experiments revealed interesting, relative
differences between the performances of the three techniques.
Given the size of our dataset, we expect that these differences
will persist across larger samples of Dota 2 logs.

Looking beyond Dota 2, since our proposed method of
building graphs from logs is general and avoids manual feature
selection (i.e., collect all interactions between entities that
interact), it simplifies the task of performing similar analyses
of other games. Furthermore, while our proposed method of
testing different embedding techniques requires log entries
with attached timestamps, our method of building a graph from
logs is free from this requirement. This further supports the
use of embedding techniques across a wide range of games.

As we learned from our analysis, the embedding techniques
appear to be sensitive to the relative abundance of different
types of interaction, where the inclusion of a particularly
abundant type of interaction can cause a degradation in the
information that is represented about the other types. A
potential improvement might be to compute a separate set of
vectors for each type of interaction that is of interest in a game,
as doing so would help prevent an abundant interaction type
from causing valuable information about the other types to be
excluded from the embedded vectors.

For those who seek to predict player behaviour using graph
embedding techniques, the work that we have presented herein
offers a general way to (i) build a suitable graph from game
logs, (ii) generate training data and testing data for classifica-
tion, and (iii) train and optimize classifiers that predict future
interactions between game entities. Performing this optimiza-
tion step was unnecessary for our work, as we only sought to
find relative differences between prediction accuracies for the
three embedding techniques that we tested. Nevertheless, our
experimental framework supports such optimization directly:
it would be straightforward to replace the simple classifier that
we used with a more capable predictor, and the experimenter
could then proceed with parameter tuning, using accuracies on
our link prediction task as the target for optimization.

The characterization of NODE2VEC, LINE, and TGN that
we present in this paper could depend on our method for
building graphs from gameplay logs. While this method has
some desirable properties, it would be interesting to explore
how other methods of building a graph might affect the relative
performance of these or other embedding techniques.

The embedding techniques that we tested vary with respect
to the kinds of graph information that they aim to represent:
NODE2VEC (with parameters p = q = 1) aims to represent
the graph’s structure, LINE aims to represent neighbour rela-
tionships, and TGN aims to represent changes to edges over
time. It would be interesting to investigate whether any of
these aims are particularly well or poorly suited to embedding
graphs that represent interactions between game entities.

While the link prediction task that we used in this paper
offers one way to measure the performance of different graph
embedding techniques, it could be useful to develop metrics
that cover other desirable properties of player models.

Finally, given that interactions between game entities are
unlikely to capture properties of players that would be useful
for personalization, it would also be valuable to study how
models built using our method might be integrated with other
sources of player data.



VII. CONCLUSION

To the best of our knowledge, this paper represents the first
application and investigation of graph embedding techniques
for representing player behaviour in computer games. In
carrying out this work, we made the following contributions.
First, we devised a general way to build a graph based on
logs of player interactions, which we then applied to a set
of more than 3000 logs from the popular computer game,
Dota 2. Our method is straightforward to apply to any logs
that record player interactions with game entities, and it avoids
any need to manually select features. Second, we adapted
the link prediction task from prior work to suit the context
of player modelling, and we proposed an efficient way to
generate the required samples for classification. This work
will directly support future efforts to study graph embedding
techniques as a way to represent player behaviour, as it
presents a clear task to attempt and offers a tractable way
to pursue it. Third, we characterized the behaviour of open-
source implementations of three embedding techniques using
data from a well-known commercial game. Not only does this
provide data that can be used for comparison as other em-
bedding techniques are investigated, but it helps practitioners
understand the relative strengths of NODE2VEC, LINE, and
TGN in a familiar and relevant context. Finally, we offer the
complete source code of our experimental framework as a
downloadable, open-source project, to support both replication
and further evaluations [29]. Having a compact, high-quality
representation of player behaviour would be a substantial boon
to personalization in games, and we offer this research as an
early step forward in pursuit of that goal.
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