
Delayed Roles with Authorable Continuity

in Plan-based Interactive Storytelling

David Thue, Stephan Schi�el, Ragnar Adolf Árnason,
Ingibergur Sindri Stefnisson, and Birgir Steinarsson

School of Computer Science, Reykjavik University
Menntavegur 1, Reykjavik, 101, Iceland

{davidthue,stephans,ragnara13,ingibergur13,birgir15}@ru.is

Abstract. We present a plan-based story generator that allows authors
to ensure continuity over the entities in a story without committing to
which entities will fulfill the story’s roles. By combining the ideas of
authorable continuity and delayed role assignment in a plan-based sto-
rytelling context, our solution obtains benefits from both and mitigates
some disadvantages. We introduce two notions of soundness for solutions
that combine these ideas and then prove the soundness of our approach.

1 Introduction

Continuity is important in storytelling. In addition to being associated with en-
hanced feelings of meaning, it can aid in improving an audience’s understanding
of a story [6]. In interactive storytelling, the ability to delay authoring decisions
until run-time is also important; it a�ords more opportunities to gather informa-
tion about the audience before each decision is made, and it helps to avoid the
pitfalls of having pre-made decisions thwarted by unexpected interactions [10,
11]. In the context of plan-based interactive storytelling, the most common way
to ensure continuity for the entities in a story (including characters, objects,
locations, etc.) has been to name specific entities as part of an Artificial Intelli-
gence (AI) planning problem [1, 7–9] (e.g., Red should start the story at home,
and have been distracted and eaten by the Wolf before the story ends). In the
context of delayed authoring, however, naming specific entities in advance is
both presumptive (e.g., the audience might prefer a di�erent villain) and prone
to failures (e.g., the Wolf might be killed before it can distract Red). Writing a
less specific planning problem (e.g., stating that Red must be both distracted
and eaten, but not by whom) can help avoid these problems [9], but doing so
compromises the author’s ability to ensure continuity; Red might be distracted
by one character and eaten by another. Is there a way to author continuity for
story entities without requiring specific ones to be named? The concept of roles

– abstract versions of story entities that can be assigned to concrete entities
just-in-time [5] – hints at a solution: allow authors to define and constrain a set
of roles, and have them specify the story’s progression constraints using those
roles. For example: “Given a Hero and a Villain such that the Villain can eat the

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-48279-8_23

Hero, the Hero must start at home and have been distracted and eaten by the
Villain before the story ends).” While this specification permits both authorable
continuity and the delayed assignment of roles, it complicates the task of plan-
based story generation. Which entities should be available for the planner to
use, and how can we ensure that the planner’s output will always permit a valid
assignment of roles to concrete entities?

In this paper, we explore the challenge of enabling both delayed role assign-
ment and authorable continuity in a plan-based storytelling context. We begin
by analyzing the problem, noting its di�erences from related tasks and demon-
strating key properties that its solution must hold to ensure that valid role
assignments can be made. We follow with a discussion of related work. We then
present an algorithmic solution with the desired properties, prove two aspects of
its soundness, and discuss our initial implementation of it using an o�-the-shelf
planner. We conclude by reviewing our solution’s benefits and limitations and
o�ering some suggestions for future work.

2 Problem Formulation

We wish to extend plan-based story generation in a way that supports both
authorable continuity and delayed role assignment. We clarify each of these terms
in this section and follow with our analysis of the problem.

In plan-based story generation, a story is represented as a plan. A plan is
a sequence or partial order of operators, each of which transforms the state of
the story’s world to bring it from some initial state to some desired state. Each
state is represented as a conjunction of logical predicates, each of which describes
some property of one or more entities in the world (e.g., Knows(Wolf, Red)). A
planning domain specifies the set of possible operators and the set of possible
predicates, and a planning problem specifies the initial and desired states of the
world. A planner is software that accepts a domain and a planning problem and
automatically outputs a plan (if one exists) which, when executed, transforms
the problem’s initial state to its goal state. Executing a plan means applying
each of its operators to the world state in the order that the plan specifies.

In general, we say that an Interactive Storytelling (IS) system supports au-

thorable continuity (AC) if it allows authors to: (i) describe constraints over a set
of story entities, (ii) assert that di�erent constraints should hold for those enti-
ties at di�erent times in the story, and (iii) rely on the IS system to ensure that
the given constraints are respected at the appropriate times during the story’s
execution. Plan-based systems usually support authorable continuity inherently,
as their initial and goal states can require di�erent predicates to hold for any
specific entity at di�erent times in the story. For example, one could author a
plan-based story in which Red is hungry at the beginning and not hungry at the
end. However, as we explain later on, in plan-based systems that also support
delayed role assignment, support for authorable continuity is not guaranteed.

We say that an IS system supports delayed role assignment (DRA) if it allows
authors to: (i) refer to the entities of a story using abstract terms (which are

often called roles [5, 12]), (ii) describe constraints governing how each abstract
term should be assigned to a concrete story entity in the story’s world, and
(iii) rely on the IS system to assign each abstract term to a concrete entity at
run-time, in a just-in-time way that respects the authored constraints.

Taken together, our desire to support both authorable continuity and delayed
role assignment leads to the following requirements. In every solution to our
problem, authors must be able to:

1. use abstract roles to refer generally to story entities (DRA i, AC i);
2. assert that di�erent constraints should hold for the abstract roles at di�erent

times in the story (DRA ii, AC ii); and
3. rely on an IS system to ensure:

(a) that every abstract role is assigned just-in-time to a concrete entity that
respects the role’s constraints (DRA iii), and

(b) that every given constraint is respected at the appropriate time during
the story’s execution (AC iii).

2.1 Problem Analysis

To present our analysis of this problem, we consider it from two common perspec-
tives in the field of Artificial Intelligence: planning and constraint satisfaction.

From the perspective of AI planning, we wish to construct and solve a plan-
ning problem that refers to a given set of abstract roles as entities in its initial
state and goals (to meet requirements 1 & 2). To meet requirement 3a, the op-
erators in the output plan must also use these abstract roles. Furthermore, it
is important to guarantee that the planner will never return a plan which, by
some properties of the operators therein, makes it impossible to assign one or
more of its abstract roles. We will refer to solutions that uphold this guarantee
as being plan-sound. Without this guarantee, it would be possible to obtain a
plan containing some operators that could never be executed.

In addition to abstract roles, it is desirable for the plan to also involve con-
crete entities from the story’s world. There are two reasons why. First, consider
the case in which the planner could only use the given abstract roles as entities
in its plans. If an author decided to specify a story with only a few abstract
roles and a few constraints over them, the planner’s operation would be severely
restricted; it could only begin the plan with operators whose preconditions were
satisfied by the given (few) constraints, and it could only use operators whose
parameters could be filled by the given (few) abstract roles. For example, an
operator requiring three entities could not be used if only two abstract roles had
been given to the planner. If concrete entities could be used by the planner in
addition to the abstract roles, these restrictions would be eased. Second, having
more entities and relations available to the planner allows a wider variety of
plans to be created. Henceforth, we refer to the kind of plan that we desire as
semi-abstract, since it involves both abstract roles and concrete entities.

Creating semi-abstract plans is non-trivial. While it is common for least com-

mitment planners to leave certain variables unbound during the planning process

(see [14] for a review), what we aim for is di�erent. First, a semi-abstract plan’s
“variables” (i.e., abstract roles) arise as inputs to the planner, rather than being
created by the planner during least-commitment planning. Second, we require
roles to remain unbound in the final plan, rather than being bound before the
plan is returned. Furthermore, while one could modify such a planner to leave
some variables unbound in the final plan, more (and potentially extensive) mod-
ifications would be required to ensure that plan-soundness was maintained. We
present an alternative in Section 4, wherein we obtain semi-abstract plans by
automatically augmenting the inputs of an unmodified, o�-the-shelf planner.

From the perspective of constraint satisfaction, we wish to solve a constraint
satisfaction problem incrementally (e.g., for just one entity at a time) at run-
time (to meet req. 3a). Specifically, given a set of roles and a set of constraints
between them, we wish to assign each role to some concrete entity in the story’s
world in a way that respects those constraints (to meet req. 3b). Furthermore, we
wish to do so in a just-in-time fashion; by delaying each step of the assignment
until the moment that it becomes necessary, the benefits of delayed authoring
can be brought within reach1. For the solution to be sound, we must guarantee
that no (prior) step of the assignment can make it impossible to perform a later
step. We will refer to solutions that uphold this guarantee as being assignment-

sound. As we noted earlier, the interdependence of assignment steps precludes
simply tweaking a least-commitment planner to leave some variables unbound.

At what point does each step of an assignment become necessary? Given a
semi-abstract plan, its operators can be executed (perhaps in parallel) according
to their partial order in the plan. Operators that involve only concrete entities
can be executed immediately, but operators that involve abstract roles must have
each of their roles assigned to a concrete entity before all of their preconditions
can be checked. Therefore, for a given abstract role r and semi-abstract plan p,
we say that r’s assignment becomes necessary the first time that the execution
of p needs to check the preconditions of an operator that involves r.

While di�erent types of narrative mediation [8] could conceivably be used
to work around impossible assignments (e.g., by finding a di�erent plan), we
instead seek to discover whether a solution exists that is both plan-sound and
assignment-sound, and if so, how it might be made.

3 Related Work

Fairclough’s OPIATE [2] used case-based planning to automatically adapt a set
of hand-authored plans that involved abstract roles, and it assigned concrete
entities to roles just-in-time as the plan was executed. Authors could create
plans for the case base that constrained the same abstract characters at di�erent
times in the story. OPIATE technically meets the solution requirements that we
stated in Section 2, but it assumed that every planning operator would be tightly
coupled to a particular role in a story-universal set (e.g., the Victory operator
1 A discussion of how these might be seized is beyond the scope of this paper.

could only ever be performed by the Hero). It could thus only generate stories
that had roles from this set; generating stories with di�erent roles would require
both a new set of operators and a new case base. Our solution can generate
stories with di�erent roles using a single set of operators (and no case base).

As we noted in Section 2, when delayed role assignment is not part of a given
IS system, plan-based story generation inherently supports authorable continu-
ity; the initial and goal states allow constraints to be specified over any of the
entities that could be involved in the plan, and they each describe di�erent time
points in the story. While previous attempts to add delayed role assignment to
such systems have supported authorable continuity for concrete entities, there
has been no similar support for abstract roles. For example, Riedl & Stern’s Au-
tomated Story Director [9] could change which characters would achieve certain
important world states (e.g., di�erent agents could cause unrest in a market-
place), but there was no way for an author to create constraints for an abstract
role (e.g., UnrestCauser) that spanned di�erent points of time in the story’s pro-
gression. Similarly, a system by Porteous and Cavazza [7] used state constraints

to allow authors to constrain story entities at arbitrary points in the story’s
progression (not just the initial and goal states), but these entities could only be
concrete. Barber’s GADIN [1] allowed authors to describe and constrain abstract
roles in the context of dilemmas (states requiring a character to choose between
two costly actions), and it assigned concrete entities to each dilemma’s roles
at runtime. However, GADIN only used its planner after all assignments were
complete; it thus did not support authorable continuity for its abstract roles.

Thue et al.’s PaSSAGE [12] allowed authors to constrain abstract roles that
it then assigned just-in-time during the story, and constraints could be specified
for any role across di�erent times of the story (e.g., a Rival met early in the
story could appear again later on). However, while PaSSAGE thus supported
both delayed role assignment and authorable continuity, it did not use a planner
to generate its stories; it relied instead on a pre-authored tree of possible events.

4 Proposed Approach

We now present a novel extension to plan-based story generation that supports
both authorable continuity and delayed role assignment. To structure our presen-
tation, we consider each of our stated solution requirements in turn (Section 2).

To allow authors to both refer to story entities generally using abstract
roles (req. 1) and assert that di�erent constraints should hold for those roles
at di�erent times in the story (req. 2), we adopt Thue & Halldórsson’s no-
tion of an outline [13]. An outline is a construct that allows authors to specify
both a set of abstract story entities (i.e., roles) and constraints over them that
should hold at di�erent points of time during a story (e.g., Roles: Hero, Vil-
lain; Initial State: CanEat(Villain, Hero); Goal State: Distracted(Villain, Hero)·
Ate(Villain, Hero)). Each outline can be used to generate multiple varied stories.

Meeting requirements 3a (enabling just-in-time role assignment) and 3b (en-
suring correct plan execution) is more complicated. At a high level, we: (i) con-

struct a semi-abstract planning problem from the outline and the story world’s
current state, (ii) find a relaxed solution for assigning the outline’s roles and
add this to the planning problem, (iii) solve the plan, letting a planner explore
potential role assignments alongside choosing operators for the plan, (iv) post-
process the plan to recover any new role constraints and “forget” the planner’s
assignments, and (v) execute the plan, assigning roles to concrete entities when
doing so becomes necessary. We describe these steps in the following paragraphs.

4.1 Detailed Approach

We first need a way to generate semi-abstract plans (Section 2.1). While any
outline’s constraints can be used to define a completely abstract planning prob-
lem, concrete entities and relations are needed to make a problem that can yield
semi-abstract plans. For a given outline, we meet this need as follows. We begin
by defining the initial state of a planning problem as the union of three com-
ponents: (i) the outline’s initial state, (ii) the current state of the story world,
and (iii) a set of extra CanBe relations. CanBe(r, c) is a predicate that relates
an abstract role r to a concrete entity c; it is true only when assigning r to c

is part of a valid complete assignment for the outline’s roles, given their con-
straints (i.e., when r “can (safely) be” c). We use a constraint solver to compute
the CanBe relations just prior to building the planning problem. In general, if
r is assigned to c in any solution, CanBe(r, c) will be true (even if r cannot be
c in some solutions). Doing so is a relaxation of the problem that temporarily
ignores any potential interdependence between roles, which allows the planner to
start exploring potential assignments as part of its search. The interdependence
of roles is accounted for during the planning process, as we describe later on.

To allow a planner to solve our semi-abstract problem while maintaining plan-

soundness (Section 2), it is necessary to have the planner reason about potential
role assignments while it searches for a sequence of operators that meets the
plan’s goals. We accomplish this task by automatically augmenting the domain
of our planning problem. To begin, an author creates a set of predicates for
describing the state of the world (e.g., Knows(c1, c2)) and a set of operators that
define how the world can change. The author also uses this set of predicates
to specify every constraint in the outline. The operators can be defined using
PDDL syntax [3], as sketched in Listing 1 (our entities are PDDL “objects”).

Defining an operator consists of specifying its parameters as entity variables
and its preconditions and e�ects as logical statements. Taken together, the au-
thored predicates and operators make up the initial planning domain that we
then augment. Two augmentation steps are necessary.

Listing 1: A simple operator: c1 distracts c2 using a1.
1 operator: distract(c1, c2, a1)
2 preconditions: c1 ”= c2 · Knows(c1, c2) · Knows(c1, a1)
3 e�ects: Distracted(c1, c2) · Knows(c2, a1)

4.1.1 A Mapping Operator. First, we generate a new operator: map(r, c).
This operator allows the planner to experiment with assigning roles to con-
crete entities (e.g., Hero to Red) as it searches for a valid plan that includes the
authored operators. Each of these operators records that the assignment is (tem-
porarily) in force using the predicate: Mapped(r, c). For example, if successful,
the operator map(Hero, Red) would yield the e�ect Mapped(Hero, Red).

To ensure both plan-soundness and assignment-soundness, we must only al-
low the planner to make temporary assignments which, when considered in the
context of its previous assignments, correctly satisfy the outline’s constraints. For
example, if the outline constrained two roles with CanEat(Villain, Hero) and the
planner had already “mapped” Hero to Red, then the possible assignments for
Villain would need to be restricted to entities that can eat Red. Enforcing this
sort of restriction requires extra logic in the preconditions of the map operator,
as shown in Listing 2. Line 3 ensures that the planner can only (temporarily)
assign each role once, and the CanBe ensures that the planner’s first assignment
will be part of a valid solution to the outline’s constraints.

Listing 2: The map operator with sample tests of outline constraints.
1 operator: map(r, c)
2 preconditions:

3 ¬Bound(r) · Abstract(r) · ¬Abstract(c) · CanBe(r, c) ·
4 ’rÕ, cÕ : Abstract(rÕ) · (r ”= rÕ) · Mapped(rÕ, cÕ) ∆
5 [(CanEat(r, rÕ) ∆ CanEat(c, cÕ)) · · · · · (Knows(r, rÕ) ∆

Knows(c, cÕ))]
6 e�ects: Mapped(r, c) · Bound(r)

For every role/concrete entity pair that has already been temporarily mapped
(rÕ and c

Õ on line 4), we must verify that the new candidates for mapping (r and
c) will respect every outline constraint that exists between r and r

Õ. In other
words, for every outline constraint that holds between r and r

Õ, we must ensure
that it also holds between c and c

Õ. Line 5 shows examples of how testing these
constraints might look, but in general these tests are automatically generated
to suit the given outline. The map operator is thus unique to each outline. We
explain our need for the Bound(r) predicate in Section 4.1.3.

4.1.2 E�ect Synchronizers. Our second augmentation to the planning do-
main involves modifying every authored operator. Once the planner has mapped
a role to a concrete entity, it is important for plan-soundness that any e�ect
that occurs to one of the two also occurs to the other. For example, if Hero was
mapped to Red, Villain was mapped to Wolf, and the operator distract(Villain,

Hero, Flowers) occurred, then the e�ects that should come true would be more
than just Distracted(Villain, Hero) · Knows(Hero, Flowers). Distracted(Wolf,
Hero) and Distracted(Villain, Red) should also be true, along with all of the

other variations that can be generated by exchanging roles with concrete entities
in each of the e�ects’ parameters. To keep each operator’s e�ects synchronized
across roles and concrete entities once they have been mapped, we automatically
add additional e�ects to every authored operator, as demonstrated in Listing 3.

Listing 3: An augmented version of the distract operator from Listing 1.
1 operator: distract(c1, c2, a1)
2 preconditions:

Bound(c1)·Bound(c2)·Bound(a1)·c1 ”= c2 ·Knows(c1, c2)·Knows(c1, a1)
3 e�ects: Distracted(c1, c2) · Knows(c2, a1)
4 [’cÕ

1, cÕ
2 : (Mapped(cÕ

1, c1) ‚ Mapped(c1, cÕ
1) ‚ c1 = cÕ

1) ·
5 (Mapped(cÕ

2, c2) ‚ Mapped(c2, cÕ
2) ‚ c2 = cÕ

2)
6 ∆ Distracted(cÕ

1, cÕ
2)]

7 [’cÕ
2, aÕ

1 : (Mapped(cÕ
2, c2) ‚ Mapped(c2, cÕ

2) ‚ c2 = cÕ
2) ·

8 (Mapped(aÕ
1, a1) ‚ Mapped(a1, aÕ

1) ‚ a1 = aÕ
1)

9 ∆ Knows(cÕ
2, aÕ

1)]

For every possible combination of the operator’s parameters that appears
in its e�ects ((c1, c2) and (c2, a1) on line 3), we retrieve all of the roles and
concrete entities that have been mapped to or from the terms that the parameters
represent (lines 4-5 and 7-8). We then apply each of the e�ects that use that
combination of parameters (one for each combination, in Listing 3) to all possible
variations of the parameters and their mapped counterparts (lines 6 and 9).

4.1.3 Tracking Temporary Assignments. We use the predicate Bound
throughout our solution to track whether or not any role r still needs to be
mapped (if so, Bound(r) will be false). This information is useful in several
ways. First, we ensure that the map operator will be used by the planner by
adding preconditions in every operator to assert that each of its parameters
must be Bound (line 2 in Listing 3). Next, we also ensure that the planner will
make use of every role r in the outline by (i) adding Bound(r) to the goal state
of the semi-abstract planning problem for every such r (required for assignment-
soundness) and (ii) adding Bound(r) as an e�ect of map(r, c) (line 6 in Listing 2).
Finally, to allow the planner to instantiate operators using concrete entities, we
add Bound(c) to the initial state of the problem for every concrete entity c.

To continue our example, suppose that the world has the concrete entities
{Red, Wolf, Troll, Ogre, Flowers} and an initial state such that the Wolf, Troll,
and Ogre all know and can eat Red, and that the Wolf and the Troll know about
the Flowers but the Ogre does not. The following is a partial, semi-abstract plan
that our approach might generate, with some parts of the story replaced with
“. . . ” for brevity: “map(Hero, Red), . . . , map(Villain,Wolf), distract(Wolf, Red,
Flowers), . . . , eat(Wolf, Red), . . . ”. The plan is semi-abstract because it contains
both roles (e.g., Hero) and concrete entities (e.g., Flowers).

4.1.4 Plan Post-processing. Once a semi-abstract plan has been generated,
three post-processing steps are needed. First, every instance of the map operator
is removed. Second, since the planner could have instantiated operators that
involve mapped concrete entities in their parameters, we must visit each operator
in the plan and replace each occurrence of such an entity with the role that it
was mapped from (we currently assume that there was only one). We do so to
“forget” about the planner’s temporary assignments in advance of performing
delayed role assignment later on. Applying these two steps to our example plan
would yield: “. . . , distract(Villain, Hero, Flowers), . . . , eat(Villain, Hero), . . . ”.
Third, we must check the preconditions of every operator that has a role in its
parameters. If any precondition that involves roles is satisfied by the world’s
initial state (which could happen via the role’s mapped counterpart), then we
must add that precondition as a new constraint on each of the involved roles.
In our example plan, the distract operator has the precondition Knows(Villain,
Flowers) (recall Listing 3), which, given the planner’s temporary mapping of
Villain to Wolf, was satisfied by the initial state. As a result, the third post-
processing step would add the constraint Knows(Villain, Flowers) to the outline.
If this was not done, the role of the Villain could be assigned at runtime to the
Ogre (which satisfies CanEat(Villain, Hero) in the outline), and the plan would
fail because the Ogre does not know about the Flowers (failing requirement 3b).

4.1.5 Execution & Delayed Assignment. Given a post-processed, semi-
abstract plan, execution can begin. Similarly to Thue & Halldórsson’s approach
to execution [13], we keep track of a frontier of operators in the plan; any op-
erator whose preconditions are both satisfied by the current world state and
independent from any prior, unexecuted operators are executed in the story’s
world. However, before a given operator’s preconditions can be checked, any
unassigned roles that the operator involves must be assigned. To do so, we cre-
ate a constraint satisfaction problem with the outline’s roles and constraints (the
latter of which may have been increased during post-processing) as one input
and the current story world as the other. To ensure assignment-soundness, we
must solve the CSP for all of the outline’s roles every time that an individual
role’s assignment becomes necessary. Once one or more solutions are obtained,
assignments for the roles in question can be selected using any feasible method.
In our example plan, the role of the Villain would be assigned immediately be-
fore checking the preconditions of the distract operator. Assuming that the Ogre
had not come to know about the Flowers since the story started, the available
assignments would be: {Wolf, Troll}.

5 Soundness

We are interested in our approach being sound in the two ways that we presented
in Section 2. First, the plans that are generated must be plan-sound, that is, it
must be possible to assign all abstract roles that appear in any operator in the
plan. Secondly, we require the incremental solution of the constraint satisfaction

problem to be assignment-sound, that is, no step of the assignment can cause
the remaining steps to become impossible to execute. We argue here that our
approach ensures both forms of soundness.
Proposition 1 (Plan-Soundness). A legal plan composed of operators aug-

mented as described in Section 4 is plan-sound; that is, there exists a mapping

M : R æ C from abstract roles r œ R to concrete entities c œ C, such that

for every abstract role r appearing in any step of the plan or the goal condition,

exchanging every instance of r with M(r) leads to a valid plan involving only

concrete entities that achieves the (concrete) goal.

Proof. (Sketch) The preconditions of all augmented operators require Bound(r)
for every abstract role r appearing as a parameter of the operator. The only
operator resulting in Bound(r) is map(r, c), which requires that c be a concrete
entity that is similar to r in the sense that whenever r is in a predicate with
some other abstract role r

Õ and r

Õ has been mapped to c

Õ, c must be in the same
predicate with c

Õ. Thus c can safely be replaced for r at the time when map(r, c)
would be executed, because it fulfills all the same conditions as r, provided that
all other roles that r is in predicates with will be replaced in the same way.

Furthermore, by the construction of the augmented operators (Section 4.1.2),
all e�ects that apply to any entity (abstract or concrete) are also applied to all
entities that are mapped to or from it. Thus, any concrete entity c is similar to
the abstract role r that it is mapped from at all times during the plan following
the map(r, c) operator. Thus, c can safely be replaced for r at any time after
map(r, c) in the plan without making the plan invalid.
Proposition 2 (Assignment-Soundness). Let R be the set of all abstract

roles occurring in a plan p and Rp µ R. Any partial assignment Mp : Rp æ C of

abstract roles to concrete entities occurring during plan execution (Section 4.1.5)

can be extended to a full assignment M : R æ C with Mp(r) = c ∆ M(r) = c

for all r, c, such that all the constraints are fulfilled.

Proof. (Sketch) Proof by induction over the size of Mp. Base case: Mp = ÿ
(i.e., no assignment has been made). As given in the final state of the computed
plan p, Mapped(r, c) is an extension of Mp to a full assignment that fulfils all
constraints, because our approach requires the planner to use and find a mapping
for every role r œ R (Section 4.1.3).

For the inductive step, assume that Mp is the partial assignment occurring
during plan execution just before an operator o that contains an unassigned
role r and that there is an extension M of Mp to a full assignment fulfilling
all constraints. Our online role-assignment method (Section 4.1.5) will pick one
of the full extensions as computed by the constraint solver and extend Mp to
M

Õ
p = Mpfi{r ‘æ M(r)}. Thus, M is also an extension of M

Õ
p to a full assignment.

6 Discussion

To the best of our knowledge, this work represents the first attempt since OPI-
ATE to combine the three ideas of plan-based story generation, authorable con-

tinuity, and delayed role assignment. Unlike OPIATE, our solution supports the
generation of stories with arbitrarily di�erent roles using a single, simply au-
thored domain. Compared to other plan-based IS systems, our solution o�ers a
way to author continuity for story entities without having to name specific ones,
which supports increased generative variety. Because all of our augmentations
to the planning domain are generated automatically with each new problem, the
authoring burden of plan-based storytelling remains nearly unchanged; the only
extra work comes from defining the (typically few) extra entities and constraints
that outlines require. We have conducted preliminary tests with an unmodified,
o�-the-shelf planner (Fast Downward [4]), and length 10 plans with roughly
15 concrete entities and 10 possible operators take a few seconds to compute
on a single core machine. As might be expected from our e�ect synchronizers,
increasing the number of entities can significantly increase computation time.

In addition to its sensitivity to total entity count, our method has other lim-
itations. Due to the closed world assumption that Fast Downward makes, our
mapping operator can only correctly check positive predicates as constraints in
the outlines. Due to the complexity of keeping e�ects synchronized across ab-
stract roles and concrete entities, our code that generates the e�ect synchronizers
can currently only manage binary constraints. However, increasing the arity of
constraints beyond two will likely have negative e�ects on performance, as do-
ing so will require more universally quantified terms. A major strength of the
augmentations is that they are almost (aside from the two previous restrictions)
completely transparent to the author; we currently generate full PDDL domain
and problem files from a more convenient internal representation for outlines,
operators, and entity sets. Although we presented our augmentations without
discussing any subtypes of entities, in practice we are able to generate them with
full support for di�erently typed entities. We only omitted these types to visually
simplify the listings, which became overcomplicated when they were included.

While we have proven that our solution is sound in the sense that its plans
will not fail for self-sourced reasons, we cannot generally guarantee that its
plans cannot fail. In an interactive context, it seems likely that the techniques of
narrative mediation will be needed to assist when plans go awry. If the domains
of such repairs can be kept within the rough size that we have tested, it might
be feasible to use our solution to find new plans in real time.

7 Conclusions & Future Work

We have made three contributions in this work. First, we performed a detailed
analysis of the challenge of combining authorable continuity with delayed role
assignment in a plan-based storytelling context, and we concretely specified a
set of requirements for its solutions. Second, we presented a novel approach to
solving this problem that meets the stated requirements while simultaneously
providing new advantages over existing work. Finally, we introduced two new no-
tions of soundness for our problem (plan-soundness and assignment-soundness)
and sketched proofs to show that our approach is sound in those respects.

Given the variety of concerns that must be addressed by solutions to this
challenge, many opportunities exist for further research. Beyond working to ad-
dress the known limitations of our solution, further experimentation is needed
to discover more of its limitations that remain unknown (e.g., how many entities
can be handled within a given amount of time?). Further technical extensions
are also possible, such as integrating state constraints with semi-abstract plans
to make the authorable continuity more fine-grained. Changing logical repre-
sentations might also be worthwhile, as the constraints of PDDL planning may
ultimately be too limiting for the kinds of authoring that we wish to support.

References

1. Barber, H.: Generator of Adaptive Dilemma-based Interactive Narratives. Ph.D.
thesis, Department of Computer Science, The University of York (2008)

2. Fairclough, C.: Story Games and the OPIATE System. Ph.D. thesis, University of
Dublin - Trinity College (2004)

3. Gerevini, A., Long, D.: Plan constraints and preferences in PDDL3. Tech. rep.,
Dipartimento di Elettronica per l’Automazione, Uni. degli Studi di Brescia (2005)

4. Helmert, M.: The fast downward planning system. Journal of Artificial Intelligence
Research 26, 191–246 (2011)

5. Mac Namee, B., Dobbyn, S., Cunningham, P., O’Sullivan, C.A.: Men behaving
appropriately: Integrating the role passing technique into the ALOHA system. In:
Animating Expressive Characters for Social Interactions. pp. 59–62. AISB (2002)

6. Magliano, J.P., Zwaan, R.A., Graesser, A.C.: The role of situational continuity in
narrative understanding. The construction of mental representations during read-
ing pp. 219–245 (1999)

7. Porteous, J., Cavazza, M., Charles, F.: Applying planning to interactive story-
telling: Narrative control using state constraints. ACM Transactions on Intelligent
Systems and Technology 1(2), 111–130 (2010)

8. Riedl, M.O., Saretto, C.J., Young, R.M.: Managing interaction between users and
agents in a multi-agent storytelling environment. In: 2nd international joint con-
ference on Autonomous agents and multiagent systems. pp. 741–748. ACM (2003)

9. Riedl, M.O., Stern, A.: Believable agents and intelligent story adaptation for in-
teractive storytelling. In: Göbel, S., Malkewitz, R., Iurgel, I. (eds.) TIDSE 2006.
LNCS, vol. 4326, pp. 1–12. Springer, Heidelberg (2006)

10. Swartjes, I., Kruizinga, E., Theune, M.: Let’s pretend I had a sword: Late commit-
ment in emergent narrative. In: Spierling, U., Szilas, N. (eds.) ICIDS 2008. LNCS,
vol. 5334, pp. 264–267. Springer Berlin / Heidelberg (2008)

11. Thue, D., Bulitko, V., Spetch, M.: Making stories player-specific: Delayed authoring
in interactive storytelling. In: Spierling, U., Szilas, N. (eds.) ICIDS 2008. LNCS,
vol. 5334, pp. 230–241. Springer Berlin / Heidelberg (2008)

12. Thue, D., Bulitko, V., Spetch, M., Webb, M.: Socially consistent characters in
player-specific stories. In: The Sixth Artificial Intelligence and Interactive Digital
Entertainment Conference. pp. 198–203. AAAI Press (2010)

13. Thue, D., Halldórsson, K.: Opportunities for integration in interactive storytelling.
In: Schoenau-Fog, H., Bruni, E.L., Louchart, S., Baceviciute, S. (eds.) ICIDS 2015.
LNCS, vol. 9445, pp. 374–377. Springer Berlin / Heidelberg (2015)

14. Weld, D.S.: An introduction to least commitment planning. AI magazine 15(4),
27 (1994)

