Open World Story Generation for
Increased Expressive Range

David Thue, Stephan Schiffel, Tryggvi Por Gudmundsson,
Guoni Fannar Kristjansson, Kari Eiriksson, and Magnis Vilhelm Bjoérnsson

School of Computer Science, Reykjavik University
Menntavegur 1, Reykjavik, 101, Iceland
{davidthue,stephans,tryggvil5,gudnil4,karil4,magnusvbl4}@ru.is

Abstract. To let authors shape the set of experiences that can occur
when a generative Interactive Storytelling (IS) system is used, the process
of authoring for the system must support specifying constraints over how
different stories can progress. We present an extension to an existing
IS system that both allows authors more flexibility in specifying the
constraints and gives the generator more freedom in filling in the parts of
the story that the authors leave unconstrained. Our approach is based on
open-world planning using the IndiGolog action programming language
and heuristic search for plan generation.

1 Introduction

One of the primary goals of Interactive Storytelling (IS) is to create playable
experiences that are both narratively rich and richly interactive. Given this am-
bition, it is essential to support a wide range of expression for the designers and
authors of such experiences, since the systems and content they create will ulti-
mately define the set of experiences that can occur [1]. To let authors shape the
set of experiences that can occur when a generative IS system is used, the process
of authoring for the system must support specifying constraints over how differ-
ent stories can progress [1-4]. The way in which a generative IS system represents
its constraints can create conflicts between expression and implementation. For
example, while authors often give expressive freedom to the generator by omis-
sion (i.e., letting it determine any unconstrained aspects of the story’s state),
leaving the story’s state unconstrained is at odds with a common assumption of
AT Planning (that all unstated facts are necessarily false). Supporting this ex-
pressive freedom thus limits the kinds of planners that can be used. Prior work
on “open world” story generation allowed authors to leave some story world facts
undetermined [5], but true and false facts could only be asserted about the ini-
tial state of the story world. In a story world driven by a simulation, the initial
state might represent only a small fraction of the circumstances under which an
author might want one of their stories to start.

In this paper, we describe new improvements to our previous work on this
topic [6], in which authored constraints could be applied at any time in the

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-71027-3_33


The final publication is available at Springer via https://doi.org/10.1007/978-3-319-71027-3_33


story world (unlike [5]), but were limited to expressing only true or undetermined
values. To address this limitation, we changed the planner in our existing system
to support “open” worlds and improved its performance using a heuristic.

Illustrative Example. To illustrate the problem, we present a small example
that uses terminology from our prior work [6]. An outline is a set of constraints
that restrict both how and when a story should start (initial conditions) as
well as how it should ultimately end (final goals). Authors create outlines in
terms of abstract entities. Our generative IS system determines a story’s concrete
entities (which exist in the simulated world) at runtime; each abstract entity is
automatically mapped to a concrete entity that satisfies the former’s constraints.
We add the notion of intermediate goals, which are similar to landmarks [2].

Given this terminology, consider a world with 3 concrete characters (Sarah,
John, Sam), one article (Necklace), and 2 relations between them: Has(Sarah,
Necklace), ParentOf(Sarah,John). We can define an outline in which a villain
somehow obtains an heirloom from the mother of the hero, but eventually the
mother gets the heirloom back. It has 3 abstract characters (Villain, Hero,
Mother), one abstract article (Heirloom), initial constraints (Has(Mother, Heir-
loom), ParentOf(Mother,Hero), and —Has(Villain, Heirloom)), an intermediate
goal (Has(Villain,Heirloom)), and a final goal (Has(Mother,Heirloom)).

The stories that can be generated from this outline and world state de-
pend on the actions and entities that are defined in the world. One exam-
ple could be: map(Hero,John), map(Mother,Sarah), map(Heirloom,Necklace),
map(Villain,Sam), steal(Villain, Mother, Heirloom), steal(Hero, Villain, Heirloom,),
give(Hero, Mother, Heirloom). The map actions in this example associate abstract
entities from the story outline with concrete entities in the world.

We can use this example world to demonstrate how the closed world assump-
tion in our previous planner [6] fails to support negative conditions in story
outlines. With the closed world assumption, anything not mentioned in the ini-
tial state of the planner is considered false. Therefore, the initial state of the
planner in our example would be represented simply as Has(Sarah, Necklace).
However, this initial state is the same as if we did not have the initial condition
—Has(Villain, Heirloom) at all. That is, it does not distinguish between the two
story outlines where (i) the villain must not have the heirloom at the beginning
and (ii) the author does not care. Depending on the concrete implementation of
the planner, there are two possible failure cases:

1. If the planner simply ignored negative preconditions, it could return map-
pings that violate these preconditions, e.g., Villain — Sarah, Heirloom —
Necklace, because the condition ~Has(Villain, Heirloom) is never checked.

2. If the planner treated all absent conditions as negative, it would fail to
return valid mappings. For example, it would never return Hero — Sarah,
Heirloom — Necklace, because the Has(Hero, Heirloom) is not an initial
condition and thus must be false.

Since both cases are undesirable, we base our approach on IndiGolog [7], a
planner that allows us to represent facts whose value is unknown.



2 Proposed Approach

Using IndiGolog, the initial state of our planning problem consists of all facts in
the world as well as the initial conditions in the story outline, where each fact’s
value is explicitly represented. Thus, the initial conditions of our example in Sec-
tion 1 become: init(has(sam,necklace),true), init(has(john,necklace),false), and
ingt(has(villain,heirloom),false). Our action definitions in IndiGolog are essen-
tially unchanged from [6]; aside from the syntactic differences between IndiGolog
and PDDL. The only addition is that negative preconditions are checked in the
map actions. With these changes, our system achieves plan soundness and as-
signment soundness as defined in [6], while supporting more expressive story
outlines by allowing negative initial conditions.

2.1 Planner Improvements and Heuristics

Our planner uses informed search with a heuristic function to estimate the cost of
a plan. Common heuristics used in automated planning, such as delete relaxation
heuristics [8], require perfect information and an explicit representation of the
state (e.g., as a set of facts). However, due to the open-world assumption and the
use of IndiGolog, we have neither. We implemented a number of simple heuristic
features to improve the performance of the search by using two techniques for
state space reduction, as we describe below.

State Space Reduction. The definition of our planning problem allows for
plans that are equivalent in several ways. First, observe that once an abstract
entity is mapped to a concrete one, actions that use the abstract or the con-
crete entity have the same effects due to the effect synchronizers defined in [6].
Second, actions involving different entities are independent of each other and
can be reordered without changing the resulting state. For example, [find(John,
Necklace), find(Sarah, Ring)] and [find(Sarah,Ring), find(John,Necklace)] result
in the same state. To reduce the state space, we only consider actions with con-
crete entities and discard visited states whose partial plan only differs in terms
of the order of mutually-independent actions.

Heuristic. Our heuristic estimates the cost of a plan as a linear combination
of four features: the number of actions in the plan (L); the number of unfulfilled
final goal conditions (F); the number of unfulfilled intermediate goal conditions
(I); and the number of initial conditions that cannot be fulfilled with the map-
pings that are already in the plan (C).

We tested our heuristic features using six test worlds that we varied in terms
of their numbers of concrete entities, abstract entities, initial conditions, interme-
diate goals, final goals, and steps for the shortest solution plan. All the features
in the heuristic turned out to be necessary for finding plans for all six worlds in
a reasonable amount of time (10s). With the best weights that we found for the
four features (L =1, F =2, [ =3, C' = 1), the solution times for all six worlds



ranged from 5ms to 123ms — nearly two orders of magnitude faster than when
the features were ignored. More detailed data from our experiments has been
reserved for the poster that will accompany this paper.

3 Discussion and Future Work

Our solution extends prior work to allow positive, negative, and undetermined
conditions to be authored inside flexible story outlines, supporting the open
world planning of interactive stories. We also introduced extensible heuristics
for our new story planner, which achieve good performance for story generation
tasks. Although the resulting computing times seem reasonable, there are edge
cases of story outlines which cannot be completed in a reasonable amount of
time. Specifically, the intermediate goal heuristic (I) can cause the planner to
prefer mapping multiple abstract entities to the same concrete entity (when it
simplifies meeting certain intermediate goals), but the resulting search path may
never lead to a desired goal state in which those abstract entities satisfy mutually
exclusive roles. In the future, these heuristics can potentially be modified to steer
story generation towards stories of higher quality, such as those that are more
interesting to each individual player.

References

1. Riedl, M.O., Young, R.M.: From linear story generation to branching story graphs.
IEEE Computer Graphics Applications 26(3), 23-31 (2006)

2. Porteous, J., Cavazza, M.: Controlling narrative generation with planning trajecto-
ries: The role of constraints. In: Turgel, I., Zagalo, N., Petta, P. (eds.) ICIDS 2009,
LNCS, vol. 5915, pp. 234-245. Springer Berlin Heidelberg (2009)

3. Thue, D.: Generalized Experience Management. Ph.D. thesis, Department of Com-
puting Science, University of Alberta, Canada (2015)

4. Weyhrauch, P.: Guiding Interactive Drama. Ph.D. thesis, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA, USA (1997)

5. Riedl, M.O., Young, R.M.: Open-world planning for story generation. In: Proceed-
ings of the 19th International Joint Conference on Artificial Intelligence. pp. 1719—
1720. IJCAT05, Morgan Kaufmann Publishers Inc. (2005)

6. Thue, D., Schiffel, S., Arnason, R.A., Stefnisson, 1.S., Steinarsson, B.: Delayed roles
with authorable continuity in plan-based interactive storytelling. In: Nack, F., Gor-
don, A.S. (eds.) ICIDS 2016. LNCS, vol. 10045, pp. 258-269. Springer, Heidelberg
(2016).

7. De Giacomo, G., Lespérance, Y., Levesque, H.J., Sardina, S.: IndiGolog: A High-
Level Programming Language for Embedded Reasoning Agents, In El Fallah
Seghrouchni, A., Dix, J., Dastani, M., and Bordini, R.H. (eds), Multi-Agent Pro-
gramming: Languages, Tools and Applications. pp. 31-72. Springer US (2009)

8. Hoffmann, J., Nebel, B.: The ff planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14, 253-302 (2001)



